Quantum Stochastic Convolution Cocycles Ii

نویسندگان

  • J. MARTIN
  • ADAM G. SKALSKI
چکیده

Schürmann’s theory of quantum Lévy processes, and more generally the theory of quantum stochastic convolution cocycles, is extended to the topological context of compact quantum groups and operator space coalgebras. Quantum stochastic convolution cocycles on a C-hyperbialgebra, which are Markov-regular, completely positive and contractive, are shown to satisfy coalgebraic quantum stochastic differential equations with completely bounded coefficients, and the structure of their stochastic generators is obtained. Automatic complete boundedness of a class of derivations is established, leading to a characterisation of the stochastic generators of *-homomorphic convolution cocycles on a C∗-bialgebra. Two tentative definitions of quantum Lévy process on a compact quantum group are given and, with respect to both of these, it is shown that an equivalent process on Fock space may be reconstructed from the generator of the quantum Lévy process. In the examples presented, connection to the algebraic theory is emphasised by a focus on full compact quantum groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 11 49 7 v 2 [ m at h . O A ] 1 F eb 2 00 8 QUANTUM STOCHASTIC CONVOLUTION COCYCLES II

Schürmann's theory of quantum Lévy processes, and more generally the theory of quantum stochastic convolution cocycles, is extended to the topological context of compact quantum groups and operator space coalge-bras. Quantum stochastic convolution cocycles on a C *-hyperbialgebra, which are Markov-regular, completely positive and contractive, are shown to satisfy coalgebraic quantum stochastic ...

متن کامل

ar X iv : m at h / 06 11 49 7 v 1 [ m at h . O A ] 1 6 N ov 2 00 6 QUANTUM STOCHASTIC CONVOLUTION COCYCLES II

The theory of quantum stochastic convolution cocycles is extended to the topological context of compact quantum groups. Stochastic convolu-tion cocycles on a C *-hyperbialgebra, which are Markov-regular, completely positive and contractive, are shown to satisfy coalgebraic quantum stochastic differential equations with completely bounded coefficients, and the structure of their stochastic gener...

متن کامل

Completely positive quantum stochastic convolution cocycles and their dilations

Stochastic generators of completely positive and contractive quantum stochastic convolution cocycles on a C∗-hyperbialgebra are characterised. The characterisation is used to obtain dilations and stochastic forms of Stinespring decomposition for completely positive convolution cocycles on a C∗-bialgebra. Stochastic (or Markovian) cocycles on operator algebras are basic objects of interest in qu...

متن کامل

How to Differentiate a Quantum Stochastic Cocycle

Two new approaches to the infinitesimal characterisation of quantum stochastic cocycles are reviewed. The first concerns mapping cocycles on an operator space and demonstrates the role of Hölder continuity; the second concerns contraction operator cocycles on a Hilbert space and shows how holomorphic assumptions yield cocycles enjoying an infinitesimal characterisation which goes beyond the sco...

متن کامل

ar X iv : 1 20 2 . 64 89 v 3 [ m at h . FA ] 9 J un 2 01 3 QUANTUM FEYNMAN – KAC PERTURBATIONS

We develop fully noncommutative Feynman–Kac formulae by employing quantum stochastic processes. To this end we establish some theory for perturbing quantum stochastic flows on von Neumann algebras by multiplier cocycles. Multiplier cocycles are constructed via quantum stochastic differential equations whose coefficients are driven by the flow. The resulting class of cocycles is characterised un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011